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THE PARABOLIC GROWTH OF OXIDE SOLID SOLUTIONS 

ON BINARY ALLOYS: A SEMI~EMPIRICAL APPROACH 

D.P. Whittle*, F. Gesmundo**, and F. Viani** 

Abstract 

The growth of solid solution oxide scales on alloys has been 

described by considering either the transport of the cations 

themselves, or that of the defect species in the oxide lattice. The 

two approaches have been shown to be similar. However, it has 

become apparent that the simplified defect model implicitly assumed 

in previous analyses using the ionic transport approach is not 

adequate to fully describe the variation of ionic diffusivities with 

oxygen potential or oxide composition. Further analyses, using a 

combination of the two approaches, are suggested. 
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INTRODUCTION 

The growth of solid solution scales containing ions of the 

same valence on binary monophase alloys has been examined by a 

number of authors [1-7], following the fundamental paper by 

Wagner [8]. Wagner 1 S original equations described the simultaneous 

transport of two cations through a growing surface scale, and while 

these equations were quite general their application to a particular 

system requires a knowledge of the dependence of the self-diffusion 

coefficients of the two cations on both oxygen activity and oxide 

composition. Thus, a detailed knowledge, or model, of the defect 

structure of the oxide solution is required. Indeed, an alternative 

approach can be adopted that considers the transport of the defect 

species through the scale rather than the diffusion of the ionic 

species, as has been used for the growth of oxide scales on pure 

metals or oxide solutions containing ions of different valency [9]. 

This paper, then, will show that the two approaches are 

similar, although it will be demonstrated that consideration of 

lattice defect motion alone is not sufficient for the case of growth 

of an oxide solution, since in these terms the two types of cations 

are essentially identical. A following paper [10] will demonstrate 

that using a more complete model for the oxide defect structure 

allows a more complete treatment of the growth of solid solution 

scales to be presented. 
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THEORY 

Thermodynamics of Defects in an (AB)O Solid Solution 

The variation in concentration of lattice defects with 

composition in a solid solution oxide containing two kinds of 

metallic cations of the same valency has been analyzed by a number 

of workers, of which the more relevant are Zintl [11], Chen and 

Peterson [12], and Dieckmann and Schmalzried [131. However, for the 

most part these treatments have primarily been directed at 

interpretations of the variation of experimentally determined 

phenomenological variables, such as ionic diffusion coefficients or 

electrical conductivities, as functions of the equilibrium 

parameters of the system. The models used to interpret the behavior 

have generally been formulated on the basis of a simple 

approximation that only one kind of defect, usually a cation 

vacancy, prevails. This approach may well be adequate when the 

oxygen potential range considered is not very great; however, it is 

becoming increasingly clear (see, for example, Kofstad [14]), from 

measurements of electrical conductivity and of tracer and chemical 

diffusion coefficients over wide ranges of oxygen potential, that 

this simple approximation is no longer adequate and that a more 

complete model for the aefect structure of the oxide is necessary. 

This is especially true for the interpretion of the parabolic growth 

rate of a pure oxide on a pure metal [9], since the oxygen potential 

varies from the dissociation pressure of the oxide at the inner 



4 

oxide/metal interface to the ambient oxygen pressure, usually 1 atm. 

at the outer oxide surface. The same kind of considerations apply 

to the growth of solid solution scales, requiring as complete a 

description as possible of the defect structure of the oxide 

solution and hence the variation of its transport properties with 

composition and oxygen potential. 

Consider, then, the oxide solid solution formed from 

component oxides AO and 80, which have the same crystal structure. 

Typical oxides falling within this category include FeO, CoO, NiO, 

MnO, and MgO, all of which have the Bl rock~salt structure, and 

within certain temperature and oxygen potential ranges form complete 

solid solutions, (AB)O. Here it is assumed that the BO~compound is 

the more stable oxide. In what follows it will be assumed that the 

defect structures of the pure component oxides are known, that 

electron transport is much more rapid than ionic transport 

(semiconducting oxides), and that the presence of defects in the 

oxygen sublattice and interstitial cations can be neglected. In 

addition, it will be assumed that interactions between the different 

types of defects can be ignored. All these assumptions are 

generally acceptable to workers in this field, and there are no 

experimental data to the contrary. 

The quasi-chemical equations for the formation of cation 

vacancies in a pure oxide, AO or BO, may be written in the general 

form 
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l/2 02 - ox + vx (1 a) 

X v + h. (lb) v "' 
II 

+ h. v "' v (lc) 

where the Kroger-Vink notation has been used, and will be used 

throughout. These equations give rise to corresponding equilibrium 

constants, which are indicated by KA~, K~~. and 
v 

K~~~ respectively, tor Eqs. (la) through (lc) for pure AO, and 
BO BO 80 

K x' KV'' and KV" for pure oxide 80. These 
v 

equilibrium constants are of course related to the standard free 

energies of formation of the various defects in the two pure 
o AO o AO o AO oxides: (.~G ) , ( ~Gv,) • ( ~G ") , and vx v 

o 80 o BO o 80 . 
(6Gvx) , (6Gv,) , (6GV") , respect1vely. 

In the solid solutions, (AB)O, the free energies of 

formation of each kind of defect is expected to be different from 

those of the pure oxides and to be a function of the solid solution 

composition, As indicated earlier, when the component oxides AO ancl 

80 are of the same crystal type and form a complete homogeneous 

solid solution over their entire composition range, the resulting 

solution often approximates to thermodynamically ideal behavior. 

This is indeed the case for many of the cubic oxide solutions 

referred to earlier (see, for example, NiO-CoO [15]). 

As a consequence, it seems appropriate to approximate the 

free energy of formation of a defect i (i = Vx, V', or V'') in the 
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solid solution oxide ~G~ to a composition weighted average. 

Thus 

o o AO o 80 
~Gi ~ (1 - ~)(~G;) + ~(~Gi) , 

i '"' VX 9 vI 
9 

V11 ( 2) 

~ is the mole fraction of oxide BO (the more stable component) in 

the oxide solution. It should be noted for later reference that ~ 

is also the equivalent fraction of component 80 in the solid 

solution, since the valencies of the two cations zA and z8 are 

identical, and equal to 1 z0 I· It should also be noted that 

Eq. (2) is consistent with the transport coefficients of cations A 

and B, varying proportionally to the exponential of the oxide 

composition at a fixed oxygen potential (a single kind of defect 

prevailing): a relationship verified experimentally for these 

transition metal oxides [16]. Using the general relationship 

between free energy change and equilibrium constant, and putting 

=: VX 9 vI 9 VII 

where K. represents the quasi~equilibrium constant for the 
1 

formation of vacancies of type i in the oxide solution, a 

combination of Eqs. (2) and (3) then gives 

( 3) 
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( 4) 

Thus, with reference to the reactions described in Eq. (1) 

Kvu = [Vu]p/[VI] ( 5) 

where [ ] oenote concentration (Henry's law assumed) and p replaces 

[h1
], The composition dependence of the various defect 

concentrations are then given by 

(6a) 

(6b) 

(6c) 

In order to calculate the concentrations of all the defects, 

as functions of oxygen potential and solid solution composition, the 

local neutrality conoition must be established in addition to 

knowing the various constants in Eq. (6). The formation of 
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electronic defects in these oxides may be represented by the 

quasi-chemical equation null = e' + h1
', which has an equilibrium 

constant, Kel' given by 

(6d) 

where n replaces [e']. Thus, the electroneutrality condition becomes 

p = [V'] + 2[V 11
] + n (7) 

Substitution of Eq. (6) in Eq. (7) gives a cubic equation 

relating p with ~ and a
0

: 

(8) 

When Eq. (8) is solved, the concentrations [V 1
] and [V 11

] can be 

obtained from Eqs. (6b) and (6c), respectively; the concentration 

[Vx] is independent of the charge balance and is obtained directly 

from Eq. (6a), while n is obtained from Eq. (6d). 
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Transport Equations 

General transport equations for the parabolic growth of an 

oxide on either a pure metal or dilute alloys forming an oxide doped 

with an aliovalent cation with a uniform or nonuniform distribution 

of the dopant have been developed [9] that take into account the 

real complexities of the oxide defect structure. In essence, the 

fundamental equation expressing the overall flux of defects 

(vacancies) Jdef in the growing oxide is given by 

where x is distance in the scale measured from the alloy/scale 

( 9) 

interface, ~is a proportionality factor required to convert the 

concentrations of defects, usually expressed as mole fractions to 

the more convenient units of numbers of defects/unit volume: ~ 

equals NA P /M (NA being Avogadro's number, p the ox ox ox 
oxide density, and M

0
x its molar weight). The D.'s and [i] 's 

1 

are the transport coefficients and concentrations of the species 

indicated. Multiplying through Eq. (8) by dx, integrating from X=O 

to X=X where x is the instantaneous scale thickness, and s s 

recalling that to a very good approximation, Jdef is constant with 

respect to x for a given x , yields s 
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(10) 

where a 1 and a 11 are the oxygen activities at the alloy/scale 
0 0 

and scale/gas interfaces 9 respectively, and L (Ddef[def]) has 

rep·laced the expression in chain brackets in Eq. (9). Kt is the 

parabolic rate constant for scale growth expressed as molecules of 

oxide formed per unit surface area per unit time for unit scale 

thickness (molecules/cm2ts) and may be converted into the more 

common constant 9 K 9 expressed in terms of overall scale thickness 
X 

by 

2 
X "" K t S X 

using the relationship 

If Eq. (9) is again multiplied through by dx and integrated from 

x = 0 to a given value of x < x 9 then 
- s 

Jdef ' x "" 

Dividing Eq. (13) by Eq, (10), using Eq. (12) gives 

X/X = Y = 2/K 
S X 

( 11) 

( 12) 

(13) 

(14) 



11 

giving tl1e profile of a0 as a function of the dimensionless 

position y, through the scale. 

In order evaluate the integral in Eq. (14), and hence 

calculate the oxygen activity profile through the scale and the 

parabolic rate constant Kx, the function L. (Ddef[def]) must be 

known. For a pure oxide, this is straightforward [9] since 

L.(Ddef[def]) is only a function of a0 and is obtained through 

the simultaneous solution of Eqs. (8) and (6) with ~ = 0 or 1 (pure 

oxide). In the present case in which the oxide contains two types 

of metallic cation, this is not possible: r.(Ddef[def]) depends 

on both a0 and ~' and as a consequence the dependence of ~on 

the local position in the scale (or on a0, although ~ is not a 

single-valued function of a0) is also required. The variation of 

~ through the scale cannot be obtained from the present analysis in 

its current form. Only the motion of lattice defects has been 

consiaered~ and in these terms the two types of cations are 

considered essentially identical. However, as will be discussed 

later, differences in the rates of exchange of the different cations 

with neighboring defects (jump frequencies) and correlation effects 

give rise to the cation concentration profiles that develop in the 

growing scale. 

One approach to overcome this dilemma is to use 

experimentally determined cation concentration profiles, i.e., 

~ ~ f(y), as input data so that the calculations can then be 

completed. Gesmundo and Viani [9] have carried out such 
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calculations for assumed cation distributions in oxide scales 

consisting of a noble metal oxide doped with a small concentration 

of an aliovalent cation. Here, interest is in oxide solutions 

containing cations of the same valency, and in the following section 

similar types of calculation are carried out for the oxidation of 

Ni~Co alloys using the experimentally measured concentration 

protiles [6]. 

ANALYSIS OF Ni-Co ALLOY OXIDATION 

The measured concentrations [6] through the scales formed on 

four Ni-Co alloys oxidized at 1000°C in 1 atm. oxygen are shown in 

Fig. 1. Different samples had been oxidized for different periods 

of time, but all the concentration profiles have been reduced to the 

same dimensionless scale , y = x/x • An analytical expression has 
s 

been fitted to the various profiles to give ~(y), and these are 

included as the solid lines in Fig. 1. 

In addition, the values of the equilibrium constants for the 

formation of the different ionic and electronic defects in the two 

pure oxides, NiO and CoO, are required. For CoO, these have been 

measured by a number of authors and are summarized by 

Dieckmann [17]. At lOOOoC, 
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As indicated earlier, the presence of interstitial defects has been 

neglected. Corresponding values for pure NiO [18] are: 

- ·-5 
5 .33xl0 ; Kel = 1.12xlo-16 . 

The diffusion coefficient of the vacancies is assumed to be 

independent of their charge, and also independent of oxide 

composition, although the latter assumption is not strictly 

valid [13], and this will be discussed in a later paper. 

In the present analysis, the value for CoO at lOOOQC has 

been used as reported by Dieckmann [17]: 

In order to then solve Eq. (14) using Eqs. (8) and (6), the 

function ~(y), and the data above, an iterative procedure is 

necessary. A tentative profile, a0(y), is assumed (zero-order 

approximation) and this is used to evaluate the corresponding 

concentration profiles of all the defects, the parabolic rate 

constant, Kx' and a new profile a0(y) (first-order 

approximation). The entire calculation is then repeated using this 

new a
0

(y) profile, and the process is repeated until successive 

iterations of K differ by less than a prescribed amount. A 
X 
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convenient profile of a0(y) to initiate the calculation is that 

for a uniform distribution of cobalt in the oxide, with a 

concentration equal to that of the bulk alloy. 

Figures 2a, 2b, 2c, and 2d show the variations of [V 11
], 

[V'], [Vx], p, and n across the scale formed on Ni ~ 10.9 percent, 

20 percent, 38 percent, and 80 percent Co, respectively, at lOOO"c. 

As indicated earlier, these have been calculated using the 

experimentally measured Co distributions through the oxide. A 

number of points emerge from these calculations: 

(a) singly charged vacancies, V', predominate, expecially 

at higher oxygen potentials for all the alloys, 

(b) as the cobalt content of the alloy and hence the Co 

concentration in the oxide increases, the concentrations of 
X V and e' become increasingly significant, 

(c) and as the cobalt content of the oxide increases, the 

total concentration of all types of defect increases. 

These calculations also give the oxygen potential variation across 

the oxide and the parabolic growth rate of the scale. These latter 

values are shown in Fig. 3 (dashed curve) and are compared with the 

available experimental data. It should be noted, as pointed out 

earlier~ that the calculations have been carried out assuming that 

Dv is independent of composition, and the value of DV in pure 
~7 2 

CoO has been used (2.975xl0 em /s). However, measurements of 

Dv in pure NiO give a value of 1.3lxl0~ 7 cr/;s at l000°C, 

Thus. the calculated values of the rate constant are somewhat 
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sensitive to the value of Dv used, although the defect 

concentration profiles are not. The full curve in Fig. 3 has been 

recalculated taking into account that Dv varies linearly with 

composition, although this too is somewhat of an 

approximation (13). Thus, the agreement between calculated and 

experimental rate constants in Fig. 3 is quite acceptable. 

PREDOMINANCE OF A SINGLE TYPE OF DEFECT 

The previous treatment requires that all the equilibrium 

constants (or free energies of formation) for all the kinds of 

vacancies and for the intrinsic ionization for both pure oxides are 

known with a sufficient accuracy. Since this is not generally the 

case, some simplification is often necessary. This is achieved by 

assuming that only one kind of vacancy predominates in the oxide 

solution over the entire range of oxygen potential involved in the 

growth of the oxide. It is also convenient to assume that 

negatively charged electronic defects can be ignored. Under these 

assumptions, the pseudo-chemical equation for the formation of a 

vacancy of charge z is 

(15) 

and the corresponding equilibrium constants for the two pure oxides 

are given as k~0z• and k~0z•, respectively. It should be 

noted that these equilibrium constants, denoted by lower case k's 
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are slightly different in form than those referring to Eq. (1) given 

earlier. Since only one kind of defect predominates, the equation 

for its formation is written relative to the perfect lattice, and it 

is thus easy to show that when z = 1, for example, 

k~~ = KA~K~~. Using a procedure similar to 
v 

before in considering the free energy of formation of defects in the 

oxide solution as a linear function of its composition gives 

and 

k = kAO 
Z I l I v v 

k I vz 
Z I Z 

= [V ]p 1 a0 

The three values of z = 0, 1, and 2 are considered below. 

(a) Neutral vacancies: z = 0 

I "' 
[Vx]/a = kAO(kBO/kAO)~ 

vx 0 vx vx vx 

giving 

[Vx] = kAO 
vx 

( k BO I kAO) ~ a 
vx vx 0 

(b) Singly charged vacancies: z "' 1 

I I AO (k 89/kA9)~ = [V ]p/ a0 = k I 

v v v v 

(16) 

(17) 

( 18a) 

(20A) 

(18b) 
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giving 

( 19b) 

Using the electroneutrality condition, Eq. (7), which for this case 

is p = [V'], yields 

[ v 'J ~ kA9 ( k B? I kA9) ~ 1 I 2 ao 1/2 
v v v 

(c) Doubly charged vacancies: z = 2 

I u = [V
11

]p2Ja
0 

= kA~(k 8~;kA~) t; 
v v v v 

giving 

(20b) 

(18c) 

( 19c) 

In this case, the electroneutrality condition is p 2[V"], and thus 

(20c) 

Equation (20) then gives the defect concentration, assuming that 

only a single type of defect predominates. However, although these 

expressions are somewhat simpler than those for the more general 

case given earlier, [def] is still a function of both oxygen 

potential, a
0

, and oxide composition, ~, and thus the function 

t;(y) is required before any solution can be obtained. As an 
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alternative to using experimentally determined profiles, as used 

earlier, profiles could be calculated using the general transport 

equations developed by Wagner [8] which consider the diffusion of 

cations themselves rather than the defects. This is considered in 

the next section. 

Growth of the Scale Equations Using Ionic Transport 

According to Wagner, the relationship between the rate 

constant for growth of an oxide solution on a binary alloy and the 

distribution of metal cation concentration and oxygen activity in 

the ~cale is given by the following two interrelated equations: 

alnaAO z lna0 
DA( ~) El: + _ _A 

a£; dy zo dy J 

+ DB E; [-
al na80 El: ZB dlna0 K +~ -ay- :::: 

a~ dy zo X 
( 21) 

( 22) 

DA and 08 are self-diffusivities of metal cations A and B, 

respectively, in the oxide solution; the other parameters have been 

defined earlier. For the case where zA = z8 = z0 and the 

oxiae solution is thermodynamically ideal, as discussed earlier, 



Eqs. (21) and (22) reduce to 

and 

K dt; 
y X dy 

19 

( 23) 

( 24) 

Bastow et al. [6] have solved these equations for the growth of 

(NiCo)O on Ni-Co alloys, with good agreement between calculated and 

experimental profiles. The solution requires a number of boundary 

conditions that will not be detailed here. In addition, an 

expression for the variation of the self-diffusivities of Ni and Co 

ions with oxygen potential and oxide composition is required. These 

were given by 

Here, P is used instead of p of the original equations to avoid 

confusion with p = [h1
] defined earlier; P is a constant and is 

( 25) 

essentially the ratio of the jump frequencies of the two cations, 

s is the ratio of the concentration of cation defects (vacancies) in 

pure BO to that in pure AO at unit oxygen activity, and v depends on 

the charge of the vacancies. These expressions, Eq. (25), have been 

used by others in similar calculations [1-3, 6, 7, 20, 21]. 
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Equation (25) is consistent with the analysis given earlier, 

provided that only one type of defect predominates. In fact~ for 

vacancies vz', Eq. (20c) can be written in the general form 

where 

Bo Ao 1/3 
(kz,kz,) 

v v 

Furthermore, assuming that the vacancy diffusion coefficient 

0 1 is independent of composition (an assumption not strictly 
vz 

( 26) 

(27) 

valid, as discussed earlier) but adopted here to be consistent with 

the earlier analysis, and using the usual relationship that 

(28) 

which is also an approximation for oxide solutions, as will be shown 

in a later paper [10], then Eqs, (26L (27), and (28) are consistent 

with Eq. (25). 

COMPARISON OF THE TWO APPROACHES 

In calculating the cation concentration, (y), and oxygen 

activity profiles, a0(y), through the scales formed on Ni-Co 

alloys oxidized in 1 atm oxygen at 1000°C, Bastow et al. [6] used 
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the following values, which represented suitable values of the then 

available data: 

The use of a nonintegral value for v makes comparison with the 

present analysis difficult. Bastow et al. [6], however, show that 

values of v of 2 or 3 make little difference to the (y) profile. 

However, they do not report the a (y) profiles. These have been 
0 

recalculated and are shown in Fig. 4 along with the cobalt 

concentration profiles for an alloy containing 10.9 at. percent Co. 

Using Eq. (26) it is now possible to examine how [V 11
] or 

[V'] (v = 3 or 2) varies through the scale according to this model, 

provided that [V"]~00 is known. 0 At this point, only Dc
0 

has been used, which according to Eq. (28) is related to DV" 

(or Dv,) by 

Thus, for internal consistency, with the value of DV"- Dv, = 

--7 2 0 -9 2 2.975 x 10 em /s and Dco = 2.4 x 10 em /s at 

lOOOaC, this gives 

[ J 0 1 --3 [ - 0 1 -:i V" CoO= 8.067 x o or V'Jcoo = 8.067 x o ~. 
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Figure 5, then, shows the calculated variation of [V•'] (v=3) and 

[V 1
] (v=2) through the scale, and compares this with the values 

calculated using the equations given in the earlier section relating 

to the defect transport. These have been solved using the 

calculated ~(y) given in Fig. 4, the values of the equilibrium 

constants that are consistent with [ V 11 ]~ 
00 

and [ V ']~ 00 as 

given above, and s = 125, that is 

v "" 2 
AO -9 BO 5 

kv~ = 4.165 x 10 • kv~ = 6.508 x 10~ 

v 3 

Agreement between the two approaches is excellent. Indeed, the 

defect concentration profiles are really independent of the charge 

assumed on the defect, providing only a single charged species is 

considered, and of the approach used. The rate constants are also 

very similar. Using the ionic transport equations, these have 
-10 2 -10 2 values of 1.64 x 10 em /s and 2.13 x 10 em /s when only 

either V' or V'' are considered, respectively. They are moreover 

similar to the values obtained using the defect transport equations, 

1.28 x 10-10 and 1.81 x 10-10cm
2
/s, respectively, under the 

same assumption regarding the defect nature of the oxide. These 

h ld b d t r 7&- 1Q~lO 21 • • F • 3 f th • s ou e compare o ~. ~ x em s g1ven 1n 1g. or 1s 

alloy and calculated using the defect transport approach with the 

experimentally measured Co concentration profiles and a complete 
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. ( 1) ~10 2; [ J model for the defects, and 0.4- x 10 em s as reported 6_ 

for experimentally determined values. 

Of course the assumption of a single type of defect is an 

oversimplification, and Fig. 6 compares the defect concentration 

profiles calculated using this simplification (only V'') with the 

results using the more realistic model for this alloy and given 

earlier in Fig. 2. An exact comparison is not very easy since 

different equilibrium constants for the defect equilibria have been 

used in the two calculations. However, it does indicate that a 

better description of the defect model to account for variation of 

the cation diffusion coefficients in the oxide solid solution ought 

to be incorporated in any analysis of the concentration profiles. 

This will be attempted in a following paper. 

CONCLUDING REMARKS 

The transport of ionic species across the parabolically 

growing oxide solid solution formed on an alloy can be described 

either by considering the diffusion of the cations themselves or of 

the defect species in the oxice lattice. The two approaches have 

been shown to be similar. However, the latter approach requires 

a priori knowledge of the distributions of the two cations, since 

consideration of the defects alone does not differentiate between 

the individual ionic species. However, it has become clear that the 

simplified defect model implicitly assumed in previous analyses 

using the ionic transport approach is not adequate to fully describe 
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the variation of ionic diffusivities with oxygen potential and oxide 

composition. Further analyses should use a combination of the two 

approaches. 
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FIGURE CAPTIONS 

Figure 1. Measured concentration profiles through the scales 

formed on Ni-Co alloys oxidized at lOOOOC (Ref. 22). 

Figure 2. Calculated concentrations of various defects across the 

NiO scale formed on (a) Ni-10.9 percent Co, 

(b) Ni-10 percent Co, (c) Ni~38 percent Co, and 

(d) Ni-80 percent Co oxidized at 1000°C (calculations 

based on the experimentally determined oxide 

compositions shown in Fig. 1). 

Figure 3. Calculated parabolic rate constants using the complete 

defect model approach as a function of composition. 

(Dashed curve is for Dv independent of composition.) 

Experimental values are also included. 

Figure 4. Calculated concentration profiles and oxygen activity 

profiles across the scale formed on Ni-10.9 percent Co 

at lOOOoC using the ionic transport approach (Ref. 22) 

and a single detect model for the oxide solution. 

Figure 5, A comparison of the calculated variation of defect 

concentrations across the scale formed on 

Ni 0,9 percent Co oxidized at 1000°C using defect 

diffusion and ionic diffusion equations, 

Figure 6. A comparison of the calculated variation of defect 

concentrations across the scale formed on 

Ni-10,9 percent Co oxidized at 1000°C using a single 

defect and a complete defect structure model, 
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